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Abstract

There is growing recognition of the potential environmental and socio-economic benefits
of applying a circular approach to urban organic waste management through resource
recovery. Decisions around planning and implementing circular urban waste systems
require estimates of the quantity of resources available in waste streams and their poten-
tial market value. However, studies assessing circular economy potential have so-far been
conducted mostly in high-income countries, yet cities in low- and middle-income countries
have different challenges when developing a circular economy. This paper addresses this
gap by estimating the resource recovery potential of organic waste streams in the context of
low- and middle-income countries, illustrated with the case of Kampala, Uganda. A simpli-
fied material flow analysis approach is used to track the transformation of waste streams,
namely faecal sludge, sewage sludge and organic solid waste into the resource recovery
products biogas, solid fuel, black soldier fly larvae and compost. Findings indicate that
even at current rates of waste collection, the three waste streams combined could annu-
ally yield 135,000 tonnes of solid fuel or 39.6 million Nm® of biogas or 15,000 tonnes
of black soldier fly larvae or 108,000 tonnes of compost and revenues from the products
could range from 5.1 million USD from compost to 47 million USD from biogas. The
results demonstrate how complex information describing urban waste can be presented to
facilitate decision making and planning by stakeholders. By highlighting different resource
recovery opportunities, application of this approach could provide an incentive for more
sustainable urban sanitation and waste management systems.
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1 Introduction

Presently, over half of the world’s population lives in cities and this proportion is expected
to increase to two-thirds by 2050, with 90% of the increase occurring in low- and middle-
income countries (UN DESA, 2018). This trend implies an increasing demand for food,
water and energy in cities (Hoff, 2011). At the same time, urban residents generate growing
quantities of waste with over 1.6 million tonnes of organic solid waste (Kaza et al., 2018)
and over 715 million m? of municipal wastewater (Mateo-Sagasta et al., 2015) being gener-
ated daily.

Many cities in high-income countries have functioning systems for collecting and treat-
ing urban waste streams. However, the prevailing linear approach to waste management
only transfers the environmental pressures downstream, e.g. through the accumulation of
nutrients and micro-plastics in oceans (Boehm et al., 2017), greenhouse gas emissions from
landfills (Kaza et al., 2018) and pollutant emissions from incineration (Lu et al., 2017).
Meanwhile, over 700 million people in urban areas in low- and middle-income countries
still lack access to improved sanitation facilities (WHO and UNICEF, 2017). In addition,
they rely on unsanitary solid waste management systems, e.g. open dumpsites (Kaza et al.,
2018). Overall, this results in large quantities of urban waste that are discharged into the
open environment, with negative implications for human and ecosystem health. Therefore,
significant investments are needed over the coming decades to address urban sanitation and
waste management challenges.

However, these urban sanitation and waste management challenges also present oppor-
tunities to develop systems that emphasize resource recovery. Resource recovery from
organic waste streams such as excreta and food waste is crucial because they contain nutri-
ents, energy, water and other materials (Andersson et al., 2016), which can be recovered
after treatment, hence implementing a circular economy (CE) approach to waste man-
agement. This can help to alleviate resource pressures and boost water, energy and food
security in and around cities, as well as reduce risks from diseases and environmental
degradation due to poor sanitation and waste management (Andersson et al., 2016). The
financial benefits from resource recovery could also provide incentives for investments into
improved sanitation services (Diener et al., 2014).

Kirchherr et al. (2017) described the CE as “an economic system that is based on busi-
ness models which replace the ‘end-of-life’ concept with reducing, alternatively reusing,
recycling and recovering materials in production/distribution and consumption processes

. with the aim to accomplish sustainable development”. In this paper, the focus is on
resource recovery from organic waste streams, a component of the CE referred to as the
“biological materials cycle” (Ellen MacArthur Foundation et al., 2013). Globally, there
is increasing interest in the CE and strategies for implementation have been developed
at city, national and regional level in several countries (McDowall et al., 2017; Schroder
et al., 2019). Several targets within the sustainable development goals can also contribute
towards a CE (Schroeder et al., 2018).

Despite a number of potential benefits, mainstream uptake and implementation of CE
approaches to waste management are still limited, particularly in low- and middle-income
country contexts (Otoo & Drechsel, 2018). Significant knowledge gaps exist in understand-
ing how to scale up resource recovery, but the potential for economically justified resource
recovery from urban organic waste is also not well understood (Ellen MacArthur Founda-
tion, 2017). Previous studies on circular approaches to organic waste management within
low- and middle-income countries have focused on identifying technological options (e.g.
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Lohri et al., 2017; Polprasert & Koottatep, 2017), environmental and economic assess-
ments (e.g. Komakech, 2014; Murray et al., 2011), social assessments (e.g. Bernstein,
2004) and business models (e.g. Otoo & Drechsel, 2018). However, even with this avail-
able knowledge, quantitative estimates of the potential for city-wide resource recovery are
rare.

Global estimates of the resource recovery potential for some waste streams and specific
valorization products have been made (e.g. Schuster-Wallace et al., 2015; Trimmer et al.,
2017). However, the actual recovery potential is highly context-specific and estimates can
only be actionable to stakeholders if they are made at a local scale. Cities typically have a
huge supply of resource-rich organic waste streams in addition to a high population that
forms potential consumers of resource recovery products. This proximity of waste supply
and resource recovery product demand makes cities suitable for CE implementation, espe-
cially for organic waste whereby loops can be closed locally at city scale (Zeller et al.,
2019). Recent attempts have been made to generate estimates of CE potential for cities like
Brussels (Zeller et al., 2019) and London (Villarroel Walker et al., 2014), but these gener-
ally focused on the quantity of waste available for resource recovery, not the quantities of
products or resources that can be obtained. In low- and middle-income countries, exist-
ing studies that have explored resource recovery at city scale have focused on one specific
waste stream, e.g. Diener et al. (2014).

The aim of this paper is to demonstrate how the CE valorization potential of various
organic waste streams in urban areas in low- and middle-income countries can be deter-
mined. Through a case study of the city of Kampala (Uganda), the approach is demon-
strated by identifying and quantifying the major available organic waste streams and
potential resource recovery products. The valorization potential is quantified based on the
physical and chemical characteristics of the waste streams, using an approach that can be
applied to other cities in low- and middle-income countries. The structure of this paper
is as follows: Sect. 2 of the paper provides an overview of the case study, while Sect. 3
describes the quantification approach and the data used in the study. Section 4 presents the
results from the case study, while Sect. 5 discusses how the insights generated can inform
urban organic waste and resource management practices in Kampala and also demonstrate
applicability for other cities, particularly in low- and middle-income contexts. Overall con-
clusions are provided in Sect. 6.

2 Case study description: Kampala (Uganda)

Kampala is the capital city of Uganda and has a resident population of 1.5 million people,
with annual growth of 2%, although the daytime population doubles due to commuting
flows (Nkurunziza et al., 2017). Of the city’s households, 92.5% use on-site sanitation sys-
tems (Schobitz et al., 2016). Throughout the city, it is estimated that between 2000 and
2500 tonnes of solid waste are generated every day and only 40% to 65% of this is col-
lected and dumped at the only authorized landfill in the city (Kinobe, 2015; Tukahirwa &
Lukooya, 2015). The rest is dumped into the environment, often close to the areas where it
is generated.

The city has two large wastewater treatment plants (WWTPs), which also receive faecal
sludge (FS) from on-site sanitation technologies via cesspool trucks, and two smaller plants
based on stabilization pond systems (Schobitz et al., 2014). The wastewater treatment
plants altogether receive about 19,500 m? of sewage and 600 m? of FS per day on average.
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Of the FS, only 43% of what is generated within Kampala and the suburbs is delivered to
the WWTPs (Nkurunziza et al., 2017). The presence of a fast-growing urban population
and hence increasing resource demand, along with increasing generation of waste amidst
insufficient sanitation and waste management infrastructure, make Kampala an interesting
case to examine the potential for circular approaches to waste and resource management.

3 Data and methods
3.1 Scope of waste streams and resource recovery options

The scope of the present study includes three waste streams and four resource recovery
technological options as shown in Fig. 1. The waste streams are FS, sewage sludge (SS)
and the organic fraction of municipal solid waste (OMSW), which are the most abundantly
available organic waste streams in Kampala and in many other urban contexts in low- and
middle-income countries. The resource recovery options are anaerobic digestion (AD),
drying and densification to generate solid fuels, black soldier fly (BSF) processing to gen-
erate animal feed and fertilizer, and composting. These options were selected on the basis
of being presently the most mature and commonly used technologies for resource recovery
in the context of low- and middle-income countries (Lohri et al., 2017). Moreover, each
of them has been implemented to some extent in Kampala and within Uganda previously
(Nakato, 2018; Niwagaba et al., 2018; Schobitz et al., 2014).

3.2 Quantification approach

The approach used in this paper to make quantitative estimates of the products that can
be generated from each resource recovery option is based on material flow analysis
(MFA), with linear relationships between the physical and chemical quality parameters
of the waste streams and the potential quantities of resource recovery products. For each

Anaerobic Biogas

Digestion

Drying and Stabilized

AD residue composting AD residue

Drying and
Waste streams | densification
(Faecal sludge,
sewage sludge &
organic municipal BSF BSF larvae

solid waste) Processing Fepresne Drying and Stabilized
composting BSF residue

Composting Compost

Solid fuel

Legend: FWERTEES IR Treatment processes Resource recovery products

Fig. 1 Schematic representation of the waste streams and resource recovery options included in the present
study
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resource recovery option, the quality parameters that determine the quantities of recov-
erable resources that can be obtained were identified from the literature, as described in
Sects. 3.2.1-3.2.4. The mathematical relationships between these parameters and the quan-
tity of recoverable resources and reuse products were also developed basing on available
data in the literature. A framework illustrating the quantification approach is provided in
Fig. 2.

While the quantity of resource recovery products that can be obtained from a particu-
lar process depends on the quality and quantity of the input waste streams as well as the
operating conditions of the technological process, only the quantity and quality of the
waste stream were considered in this study. This means that for a given quantity of a waste
stream, the quantity of resource recovery products that can be obtained only changes with
variations in the quality of that waste stream. Losses due to handling and spillage are
largely dependent on the user(s), the specific construction of the technologies used and the
operating conditions, not necessarily on the initial quantity of waste that is available for
resource recovery. As such, detailed aspects that would ideally be covered within a feasibil-
ity study are beyond the scope of the present study. Potential revenues were calculated by
multiplying the quantity of products and the estimated market prices. However, capital and
operating costs for valorization facilities were not covered since they depend on contextual
factors around location, size and scale among others which are beyond the scope of this
study.

3.2.1 Anaerobic digestion

In an AD process, the quantity of biogas that can be generated depends on the quantity of
volatile solids (VS) since this parameter represents the organic content in the feedstock
(Vogeli et al., 2014). The potential biogas yield from a waste stream is typically stated as
the biomethane potential (BMP) which is a measure of how much methane can be gener-
ated for each unit of VS within the feedstock (Vogeli et al., 2014).

The potential quantity of biogas B, in Nm? that can be generated from AD is calculated
using Eqs. 1 and 2. Equation 1 is applied to waste streams with quantities available in m?,

while Eq. 2 is used for those in metric tonnes.
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Fig.2 Overall framework illustrating the quantification approach and the data inputs and outputs
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WS, is the quantity of the waste stream in m®, WS, is the quantity of waste stream in tonnes,
TS, is the total solids content in mg/L, 7,, is the total solids content as percentage of the
total wet mass, VS,, is the quantity of volatile solids as percentage of total solids, VS, is
the percentage rate of volatile solids degradation which indicates the fraction of VS that is
biodegraded into biogas during the AD process, and BMP is the biomethane potential of
the waste stream in Nm? CH,/tonne VS. It was assumed that the biogas generated from the
process would have a methane content of 60%, which is within the typical range (Bond &
Templeton, 2011); hence, the last term of Egs. 1 and 2 translates the quantity of methane
into quantity of biogas. If the biogas is to be used as vehicle fuel, further treatment pro-
cesses would be necessary, but these are not included in this study.

According to Vogeli et al. (2014), 1 Nm? of raw biogas with a methane content of 60%
has an energy content of approximately 6 kWh or 21.6 MJ. This was used to calculate the
energy content in the biogas across all waste streams as shown in Eqgs. 3 and 4.

Energy content in biogas in MJ = B, X 21.6 3)

Energy content in biogas in kWh =B, X 6 4)
The revenue that could be generated from the biogas is calculated using Eq. 5.

Potential revenue from the biogas = B, X B, (5)

B, is the estimated price of biogas on the local market in US$/Nm?®.

Before AD residue (digestate) can be applied to agricultural land, further treatment is
necessary for stabilization and pathogen reduction (Bond & Templeton, 2011) and the
assumption was made that this treatment could consist of a simplified process of drying
and composting. The calculations to determine the quantity of AD residue that can be
obtained were based on the percentage dry mass reduction (DMR,y) of the feedstock in
the biogas digester. The quantity of stabilized digestate, R,,, in DM metric tonnes, is cal-
culated using Eq. 6 for waste stream quantities in m* and Eq. 7 for those in metric tonnes.

DMR,;, DMR,.

TS
R,, = WS %1000 x — x (1 — x (1
Ap = WS, o X (1= =) x (1= =) 6)
X ws 78, a DMRAD) a DMRC) ;
= X — X — X —
AD 100 100 100 @)

DMR,, is the percentage reduction of dry mass in the digestate, and DMR,- is the percent-
age reduction of the dry mass of the digestate during composting for stabilization. The
revenue that could be generated from the digestate is calculated using Eq. 8.

Potential revenue from the digestate = R,;, X C, (8)
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C, is the estimated price of products on the market that are equivalent to compost, soil
amendments or soil conditioner in US$/tonne, and R,, is the quantity of digestate in DM
tonnes.

There is negligible nutrient removal within the AD process (Wang et al., 2010), but com-
posting the digestate would likely result in some nutrient loss (Moller & Miiller, 2012). The
nutrient content in the stabilized digestate, NUT 4, in metric tonnes, is calculated using Eq. 9
for waste stream quantities in m® and Eq. 10 for those in metric tonnes.

NUT NR,

NUT,,, = WS, x 1000 x ——= x (1 — —=
AD y 109 ( 100 ) (9)
NUT W x om o NUT, a NRc )
= —_— X — —
AD 7100 10° 100 (10)

NUT, is the concentration of the nutrient in the waste stream in mg/L, NUT,, is the con-
centration of the nutrient in the waste stream in g/kg TS, and NR, is the percentage nutri-
ent mass reduction that would occur in the composting process for each of the nutrients:
nitrogen (N), phosphorus (P) and potassium (K). The percentage nutrient content in the
digestate is calculated using Eq. 11.

. . NUT 4p
Nutrient content in digestate (%) = . x 100 (11)

AD

Equations 9, 10 and 11 were used similarly for each of the nutrients (N, P and K). The total
potential revenues from AD as a resource recovery option were obtained by adding up the
potential revenues from biogas and the digestate.

3.2.2 Drying and densification to generate solid fuel

To use organic waste to generate solid fuels for combustion, the key quality parameter to con-
sider is the calorific value or heating value because this indicates the quantity of energy con-
tained within the waste stream (Komilis et al., 2012). The quantity of solid fuel that can be
obtained from a waste stream, F,, in DM metric tonnes, is calculated using Eq. 12 for waste
stream quantities in m* and Eq. 13 for those in metric tonnes. The assumption was made that
the densification process has negligible impact on the overall mass of the waste stream that is
turned into fuel.

TS,

Fy = WS, X 1000 5 (12)
TS,,

F,y = WS, X =& (13)

The energy content in the fuel, £, in MJ, was calculated using a similar approach to that
used by Diener et al. (2014). This is shown in Eq. 14 for waste stream quantities in m> and
Eq. 15 for those in metric tonnes.

T8,
Ep = WS, x 1000 x 10; x 1000 x CV (14)
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N
Ep,=WS§, x 106’ X 1000 x CV (15)

CV is the gross calorific value of a waste stream in MJ/kg TS. The energy content in the
solid fuel was also expressed in kWh by multiplying the results from Egs. 14 and 15 by a
constant of 0.277778 which is the standard conversion from MJ to kWh.

The revenue that could be obtained from the solid fuel is calculated using Eq. 16.

Potential revenue from the solid fuel =F,, X F), (16)

F, is the estimated price of the solid fuel in US$/tonne.

3.2.3 Black soldier fly processing

In BSF processing, the bioconversion rate (BCR) indicates the efficiency of production of
BSF larvae (Banks, 2014). The BCR is the percentage ratio of the dry mass of the larvae
produced to the dry mass of the waste stream they are fed on (Banks, 2014). Equation 17
is used to calculate the quantity of BSF larvae, BSF,,, in DM tonnes that can be obtained
from waste streams in m® and Eq. 18 for waste streams in metric tonnes.

TS, BCR
BSF_ =WS x 1000 X — x ——
= WS, 5 X o a7
TS, BCR
BSF = WS BCR
m = "o X700 ™ T00 (18)

BCR is in percentage terms, and the other parameters are as described in Sects.3.2.1 and
3.2.2.

BSF larvae contain approximately 40% protein and 30% fat (Diener, 2010), so the pro-
tein and fat content in the quantities of BSF larvae are calculated using Eq. 19 and Eq. 20,
respectively:

Protein content in the BSF larvae (tonnes) = BSF,, X 0.4 (19)

Fat content in the BSF larvae (tonnes) = BSF,, X 0.3 (20)

Some studies have shown that the fat in BSF larvae can be used to make biodiesel (Nguyen
et al., 2018), even though there are no full-scale applications so far to the best of the
authors’ knowledge and the economic feasibility at industrial scale is yet to be proven
(Surendra et al., 2020). Therefore, the use of BSF larvae for biofuel production and energy
recovery was not explored in this study. The revenues that could be generated from the
BSF larvae are calculated using Eq. 21.

Potential revenues from BSF larvae = BSF,, X BSF, 1)

BSF , is the estimated price of the BSF larvae in US$/tonne on the market.

The residue from BSF processing typically requires further treatment for stabilization
(Diener, 2010), and the assumption was made that this treatment could consist of a simpli-
fied process of drying and composting. Therefore, the calculation to determine the quantity
of stabilized residue from the BSF treatment took into account the DM reduction due to
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bioconversion by BSF larvae as well as a further DM reduction during composting. Equa-
tion 22 is used for waste stream quantities in m* and Eq. 23 for those in metric tonnes.

R WS x 1000 15, a —DMRBSF) (1 DMRC)
= X X x (11— % (1 —
BSE v 10° 100 100 (22)
Ry = WS, X LS x (1 DMRgsr yx (1 DMRC) 23
BSE T TEm 100 100 100 (23)

Ry is the quantity of stabilized BSF residue in DM metric tonnes, DMRyg is the percent-
age DM reduction in the BSF process, and DMR_- is the percentage DM reduction of the
BSF residue due to composting.

The revenues that could be generated from the residue after BSF processing and stabili-
zation are calculated using Eq. 24.

Potential revenue from BSF residue = Rggp X C, (24)

C, is the estimated price of products equivalent to soil amendments or compost on the mar-
ket in US$/tonne.

BSF processing results in a significant nutrient reduction in the residue (Van Huis et al.,
2013). This was taken into account during the calculation for the nutrient content in the
residue, including any nutrient losses that occur due to the subsequent composting process.
To determine the nutrient content in the BSF residue, Eq. 25 is used for waste stream quan-
tities in m> and Eq. 26 for waste streams in metric tonnes.

NUT 5 = WS, x 1000 x 20w o a NRBSF) x (1 NRC)
Bsp = T 00 100 100 (25)
NUT ws s om o NUT 6! NRBSF) x (1 NRC)
= X — - —
BSF m7100 T 106 100 100 (26)

NUT gy is the quantity of each nutrient in the BSF residue in DM metric tonnes, NRyqy
is the percentage reduction of nutrients that occurs during the BSF process for each of the
nutrients, and NR is the percentage nutrient mass reduction that occurs during composting
for each of the nutrients. The percentage nutrient content was calculated using Eq. 27.

. . . NUT ggp
Nutrient content in BSF residue (%) = X 100 27)
BSF

Equations 25, 26 and 27 are used similarly for each of the nutrients (N, P & K).

3.2.4 Composting

For compost, the key factors to consider are the moisture and nutrient content. The mois-
ture content is important because too much moisture creates anoxic and anaerobic zones,
potentially leading to bad odours, while too little moisture can inhibit microbial activity
which is necessary for the process to occur (Liang et al., 2003). Therefore, the quantity of
compost that can be obtained, C,, in DM metric tonnes, is calculated using Eq. 28 for waste
stream quantities in m> and Eq. 29 for those in metric tonnes.
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C,, = WS x1000 —S” a- )
= X X X
" Y 10° 100 (28)
C,=WsS —S’" 1-— < 29
" ’"XIOOX( 100 ) 29

DMR - is the percentage reduction in DM of the waste stream as a result of the composting
process. The revenue that could be generated from the compost is calculated using Eq. 30.

Potential revenue from compost = C,, X C, (30)

C, is the price of compost in US$/tonne.

During the composting process, some of the nutrients are lost due to volatilization and
leaching and this influences the nutrient value of the resulting compost (Sommer, 2001).
The nutrient content in the compost, NUT - in DM metric tonnes, was calculated in the
same way as NUT,;, using Eqs. 9 and 10 since the nutrient content in both cases was
assumed to be only affected by the composting process for stabilization. The percentage
nutrient content is calculated using Eq. 31

. . UT.
Nutrient content in the compost (%) =

x 100 31)

m

NUT . is the quantity of each nutrient in the compost in tonnes. Equation 31 is used in
the same way for each of the three major nutrients (N, P and K).

3.3 Data used for the quantification

The waste stream quantities used in this study are indicated in Table 1. Two scenarios were
analyzed: one focusing on the quantities of waste currently collected in the city (scenario
1) and another focusing on the quantities of waste that could be collected if the waste col-
lection infrastructure and logistics had a wider coverage and higher efficiency (scenario 2).
The physical and chemical quality parameters of the waste streams are shown in Table 2,
while data on parameters related to the treatment and resource recovery processes are
shown in Table 3. The price data that were used to estimate the potential revenues from
resource recovery products are shown in Table 4. Details on how the data in Tables 1 and 4
were derived are provided in Supplementary Information (SI). The equations and data for
the two scenarios were put in spreadsheets (all available at https://doi.org/10.5281/zenodo.
4452199) to facilitate ease of calculations.

Table 1 Quantities of waste streams in Kampala

Waste stream Units Current waste collec-  Potential waste collec- References

tion (scenario 1) tion (scenario 2)
Faecal sludge m3/year 219,000 509,175 SI — section A.1.1
Sewage sludge tonnes/year 31,317 92,345 SI — section A.1.2
Organic municipal tonnes/year 436,540 671,600 SI — section A.1.3

solid waste

Note SI=Supplementary Information
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4 Results

A summary of the overall CE potential from organic waste streams in Kampala is pre-
sented in Table 5. The findings indicate that with increased waste collection (Scenario
2), up to 62.5 million Nm? of biogas could be obtained along with 56,000 tonnes of
digestate, from AD. If all the waste streams were instead dried and densified, up to
215,000 tonnes of solid fuel could be obtained. If all the waste streams were used for
breeding BSF larvae, up to 24,000 tonnes of BSF larvae could be generated along
with 56,000 tonnes of BSF residue. The potential annual revenues from these products
could range from US$ 5.1 million from compost under Scenario 1 to US$ 77 million
from AD under Scenario 2.

The graphs in Fig. 3 also indicate that significant quantities of nutrient recovery
products could be obtained in both scenarios from composting, the BSF process and
AD. In both scenarios however, the quantities of nutrients that can be recovered from
FS are significantly higher than the recoverable quantities from OMSW and SS. The
nutrient recovery products from SS have the order of a few kilograms of each nutrient,
while those from FS has the order of hundreds of tonnes. Comparing between resource
recovery options, the quantity of nutrients that can be recovered from digestate and
from composting seems similar, while a much lower quantity of nutrients can be recov-
ered from the residue of BSF processing. Figure 3 also indicates that nitrogen is the
dominant nutrient within the recovery products from AD, composting and BSF breed-
ing, except for OMSW where potassium is the dominant one.

With regard to energy recovery, Fig. 4 indicates that more energy can be recov-
ered in products from OMSW than from FS or SS. The quantity of energy that can be
recovered in the form of solid fuel products is also shown to be higher than the energy
that can be recovered in the form of biogas. This results in higher revenues from solid
fuel in the case of FS and SS as shown in Fig. 5, in contrast with OMSW where the
revenues from AD are higher. Figure 5 also illustrates that more significant revenues
can be generated through resource recovery from OMSW in comparison with FS and
SS. In Table 5, it can be seen that the annual revenue potential from nutrient recovery
products in Kampala ranges from US$ 1.6 million for the residue from BSF breeding
within Scenario 1 to US$ 8.1 million for compost within Scenario 2. This is signifi-
cantly lower than the potential revenues from solid fuel or biogas in both scenarios.

Detailed tables with the disaggregated results for both scenarios are provided in
Supplementary Information.

5 Discussion
5.1 Recovery of energy

The results indicate that more energy could be recovered by converting the waste streams
into solid fuel, in contrast to anaerobic digestion. This reflects the gross calorific value
in the waste streams which ranges from 16.2 MJ/Kg TS for FS (Muspratt et al., 2014) to
17.3 MJ/Kg TS for OMSW (Komakech, 2014) in comparison with the energy content in
biogas which is 21.6 MJ/m? (Vogeli et al., 2014). The relatively higher potential revenues
from anaerobic digestion of OMSW could be explained by the higher biomethane potential
and volatile solids content of the OMSW in comparison with the FS and SS which lead to
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Table 4 Estimated prices of resource recovery products in Kampala

Resource recovery product Estimated price Units References

Biogas 1.19 US$/Nm? SI—section A.2.1
Solid fuel 333.33 US$/tonne SI—section A.2.2
Black soldier fly larvae 810.00 US$/tonne SI—section A.2.3
Compost 47.00 US$/tonne SI—section A.2.4

Note SI=Supplementary information

higher biogas yields and hence higher revenues. OMSW often largely consists of fruit and
vegetable waste which tend to have a higher carbon/nitrogen ratio which is associated with
better biogas yields (Miiller, 2009). Therefore, in instances where optimizing biogas yields
is the goal, the waste streams may have to be mixed as suggested by Minale and Worku
(2014).

While biogas from AD has been used extensively for heat and power and as a vehicle
fuel in high-income countries, the applications in low- and middle-income countries have
mainly been in the form of fuel for cooking and to some limited extent, generating electric-
ity (Otoo & Drechsel, 2018). Similarly, solid fuels in the form of briquettes and pellets
have been largely used as fuel for cooking, although there is interest in industrial applica-
tions (Gold et al., 2017). In a global review, Trimmer et al. (2017) suggested that energy
recovery from sanitation could have limited potential impact on overall energy use. How-
ever, that is because their analysis relied on electricity use data yet the reality is that in low-
and middle-income countries, household energy use is often in forms other than electricity
(Njenga & Mendum, 2018).

Across the globe, there is increasing interest in alternative renewable sources of energy
(Otoo & Drechsel, 2018). Like much of the rest of Sub-Saharan Africa where 90-100%
of the household energy demand is for cooking and 75% of that is from firewood (Smith
et al., 2011), 78% of Kampala’s population relies on woody biomass for cooking fuel, with
each person consuming an average of 240 kg of firewood and 120 kg of charcoal annually
(MEMD, 2012). Firewood has a gross calorific value of 16 MJ/kg, while that for charcoal
is 28 MJ/kg (Diener et al., 2014). Given Kampala’s resident population of 1.5 million, this
implies that the total consumption of energy from firewood in the city is 5.76 PJ and that
from charcoal is 5.04 PJ annually, hence a total of 10.8 PJ from both sources. Valorization
of solid fuel from Kampala’s organic waste could generate 2.32 PJ of energy in scenario 1
and 3.69 PJ in scenario 2, hence demonstrating the potential to substitute for 22% to 34% of
Kampala’s current wood-based fuel consumption. This demonstrates the potential impact
of energy recovery from organic waste and the potential contribution to progress towards
sustainable development goal (SDG) 7 — affordable and clean energy, as well as the envi-
ronmental benefits from reduced reliance on woody biomass for fuel (Otoo & Drechsel,
2018).
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Fig.3 Comparison of the four resource recovery options in both scenarios based on the total nutrient quan-

tities in resource recovery products that can be generated from faecal sludge (A), sewage sludge (B) and
organic MSW (C) in Kampala annually
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Fig. 4 Comparison of the four resource recovery options in both scenarios based on the total energy content
in resource recovery products that can be generated from faecal sludge (A), sewage sludge (B) and organic
MSW (C) in Kampala annually
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Fig.5 Comparison of the four resource recovery options in both scenarios based on the total potential rev-
enues from resource recovery products that can be generated from faecal sludge (A), sewage sludge (B) and
organic MSW (C) in Kampala annually
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5.2 Recovery of nutrients

As seen from Fig. 3, the variation in the quantity of nutrients that can be recovered in each
valorization option reflects the nutrient content in the raw waste streams, and the vary-
ing extents to which nutrients remain in the residue while undergoing AD, composting
and BSF breeding processes. These factors underscore the need for waste characterization
efforts both before implementing and regularly throughout the operation of any resource
recovery initiative, especially in contexts where nutrient recovery is the aim.

In Fig. 3, it can be seen that the levels of nutrient recovery from AD and composting are
similar. This is attributed to the assumption that digestate would go through a composting
process for stabilization before being used on agricultural land. It is not unusual for diges-
tate to be stabilized through composting, but the process would result in some nutrient loss
just like any typical composting process of raw waste streams (Moller & Miiller, 2012).

The results indicate that higher quantities of nutrients can be recovered from FS, in
comparison with SS and OMSW in both scenarios. Therefore, if waste streams were to be
treated separately, the focus of FS valorization should be for nutrient recovery. An alter-
native approach for optimizing nutrient recovery would be to combine the waste streams
since FS and SS have relatively higher proportions of nitrogen, while OMSW has a rela-
tively higher proportion of potassium. The advantages of this approach have been docu-
mented, e.g. from co-composting FS and OMSW (Cofie et al., 2009), and there are some
full-scale implementations in Africa and Asia (Otoo & Drechsel, 2018).

The results also indicate that the annual revenue potential from nutrient recovery prod-
ucts in Kampala is significantly lower than from solid fuel or biogas in both scenarios.
This is in line with findings from previous studies in low- and middle-income countries
which have shown that for FS for example, the highest financial value from resource recov-
ery would be obtained by valorization for energy (Diener et al., 2014). Nutrient recovery
in the form of compost or soil conditioner tends to have a lower financial value because
farmers who are the target market have concerns about low nutrient content, perceived and
real health risks associated with excreta-derived products and the difficulty of handling on
the farm in comparison with chemical fertilizers (Danso et al., 2017). In some cities in
sub-Saharan Africa, the price that farmers are willing to pay for compost would be insuf-
ficient to even cover the costs associated with the waste treatment processes (Strande et al.,
2014). Potential approaches to mitigate this low uptake of nutrient products have focused
on, e.g. fortification, putting waste-derived compost in appealing packages and certifica-
tion schemes (Danso et al., 2017; Otoo & Drechsel, 2018), and some of these efforts have
resulted in higher prices being paid for excreta-derived fertilizers, e.g. in Haiti and Kenya
(Moya et al., 2019).

5.3 Fly larvae production

In recent years, there has been erratic supply along with price fluctuations for the tradi-
tional sources of protein in animal feed, e.g. fish meal and soybeans in Uganda (Onen
et al., 2019). Since BSF larvae can be bred on a wide range of organic waste streams which
are abundantly available in typical urban settings, they are seen as viable alternative ingre-
dients for animal feed within livestock enterprises (Joly & Nikiema, 2019). Fly larvae pro-
duction therefore forms another option for nutrient recovery through turning organic waste
into animal feed.
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Diener et al. (2014) estimated that the potential market value of BSF larvae from col-
lected FS in Kampala could be US$ 109,200/year. This is much less than the estimate of
USS$ 278,500/year within scenario 1 in the present study. The difference is because Diener
et al. (2014) estimated the value of BSF larvae based on the price of an equivalent quantity
of protein in fish meal, while the present study is based on reported prices of BSF larvae
from existing operations in Uganda (see Supplementary Information).

Besides breeding BSF larvae, there are other approaches for valorizing organic waste
streams using insect larvae (St-Hilaire et al., 2007) and worms (Lohri et al., 2017). These
approaches also have potential for making animal feed. However, BSF larvae seems to have
gained relatively more interest in recent years for commercial-scale applications (Lohri
et al., 2017). There are pilot and full-scale facilities producing BSF larvae from a range of
organic waste streams in low- and middle-income countries like Uganda (Nakato, 2018),
Kenya (Moya et al., 2019), South Africa, Ghana and Indonesia as well as in high-income
countries like USA, Canada and the Netherlands (Joly & Nikiema, 2019).

In Kampala, one of the major ingredients for animal feed is dried fish, whose protein
content is 60% (Sauvant et al., 2004). Farmers usually mix this with other substances like
maize bran to make feeds for chicken, pigs, cattle and other livestock. BSF larvae has a pro-
tein content of 40%, and hence, 1 tonne of dried fish could be substituted by 1.5 tonnes of
BSF larvae. This implies that the quantity of BSF larvae that can be produced from organic
waste streams in Kampala could substitute for between 10,000 and 16,000 tonnes of dried
fish. There is increasing demand for animal-based protein in people’s diet, especially in
low- and middle-income countries (Boland et al., 2013), which in turn drives demand for
animal feed ingredients. Having BSF larvae as a substitute for fish meal within animal feed
ingredients could therefore mitigate some of the impact from the demand for animal-based
protein on fish stocks and other marine resources (Van Huis et al., 2013) and hence con-
tribute to progress towards SDG target 14.4 which is about ending overfishing and illegal
fishing practices so as to restore fish stocks.

BSF larvae also has significant potential for effective waste treatment considering that
the waste quantities can be reduced by 50 to 80% (Lohri et al., 2017), while having rela-
tively low greenhouse gas emissions (Ermolaev et al., 2019). Recent studies have also dem-
onstrated the impact of BSF larvae activity on reducing pathogens like Salmonella spp. as
well as some pharmaceuticals and pesticides (Lalander et al., , 2013, 2016).

5.4 Implications for sanitation, waste and resource management

The results from this study show that there is great potential to generate value through
resource recovery from organic waste streams in Kampala, especially from OMSW which
is currently collected in significantly higher quantities than FS or SS. This signals the need
for further investments in the infrastructure for collecting FS and SS. The insights revealed
hereby could enable urban decision-makers to embark on a paradigm shift from waste
treatment for disposal to waste treatment for resource recovery, and it could encourage
investments in sustainable waste and resource management which could address the chal-
lenge of growing urban populations and the consequent energy, food and water demands
(Andersson et al., 2016; Rao et al., 2015).

From a policy and practice perspective, this analysis could be useful as a first step to
enable city authorities and planners to understand the impact that resource recovery could
have on resource consumption in a city. In Kampala where most of the solid waste that
is collected ends up at a landfill, Komakech (2014) showed that the quantity of nutrients
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disposed of annually at the landfill was equivalent to about 92%, 110% and 680%, respec-
tively, of the nitrogen, phosphorus and potassium imported to Uganda annually as chemi-
cal fertilizers. This therefore highlights the extent to which nutrient recovery from organic
waste streams could reduce the dependence on chemical fertilizers.

Other products that could be substituted with considerable positive environmental
and socio-economic impacts include dried fish meal for animal feeds and imported fer-
tilizers (Diener et al., 2014; Otoo & Drechsel, 2018). Additional benefits include cost
savings, depending on the resource recovery option, since waste would only need to
be treated to standards appropriate for the intended end-use and not to the rigorous
standards for discharging into recipient waters or other vital ecosystems, as currently
demanded (Otoo & Drechsel, 2018). Moreover, analysis by Schroeder et al. (2018)
has shown that CE initiatives can contribute directly to achieving several targets of the
sustainable development goals (SDGs), especially SDG6—clean water and sanitation,
SDG7—affordable and clean energy, SDG 8—decent work and economic growth, SDG
12—responsible consumption and production and SDG 15—Iife on land. This therefore
demonstrates the impact that CE valorization from organic waste can have in a develop-
ment context.

Realizing the valorization potential highlighted by this study does not imply that waste
treatment must be carried out on a large scale at centralized facilities. It may be feasible to
establish several decentralized facilities in a city or to promote resource recovery practices
and technologies at household or neighbourhood levels, depending on what business mod-
els and logistic arrangements are viable (Otoo & Drechsel, 2018). Indeed, the challenges of
creating efficient and effective logistic systems for the management of urban waste streams
are the subject of an increasing number of studies, including Kinobe (2015) and Schob-
itz et al., (2017). Thus, the information generated in this study can provide relevant infor-
mation to guide planning in such contexts. Operationalizing the information produced in
this study would therefore require going beyond revenues and determining the capital and
operating costs for various treatment technologies at different scales as well as the exist-
ing demand for various resource recovery products to determine those most feasible for
Kampala. The feasibility of increasing the coverage and efficiency of collection systems
for the various waste streams would also have to be determined since several technical,
institutional and socio-economic factors may influence the extent to which collection rates
can be improved.

At the same time, different resource recovery options could imply trade-offs between
aspects such as nutrient recovery and energy recovery as the comparisons in Figs. 2, 3
illustrate. There are multiple valorization options for each organic waste stream (Lohri
et al., 2017), and addressing this potential competition for feedstock could perhaps require
earmarking different waste streams for different valorization options depending on what
is most suitable, as discussed in Sect. 5.2 for FS and nutrient recovery. The valorization
options are also associated with different types of environmental challenges. For example,
AD could lead to leakage of methane, while combustion of solid fuels could lead to air
pollutants. However, other environmental impacts are avoided, for example nutrient enrich-
ment from effluents to surface water bodies. For a more detailed evaluation, more com-
prehensive tools, e.g. life cycle assessment, are needed. Nevertheless, the approach in this
study could inform decision-support tools for stakeholders to be able to easily compare
resource recovery options as there is a gap in such tools for LMICs (Ddiba, 2020).

For cities like Kampala, the simplicity of the approach used in this study could also
enable participatory dialogues with stakeholders from a wide range of sectors and back-
grounds including sanitation, waste management, energy, agriculture, water, health and
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environment, among others. The collaboration of multiple stakeholders is necessary to
enable resource recovery to happen (Otoo & Drechsel, 2018), and the results from this
analysis can provide a starting point for such collaboration, in Kampala and other cities in
low- and middle-income countries with similar contexts.

5.5 Limitations

From a scientific perspective, conducting this analysis for Kampala highlights a number of
future opportunities to apply a similar approach for decision support around CE potential
in other urban contexts, as well as current limitations. The present study focused on only
three waste streams, but other flows of organic waste in urban areas, e.g. animal manure,
agricultural residues and food industry by-products, could be covered if data were available
on their quantities and characteristics. This therefore presents an area for further research,
as well as investigating other valorization options as new technologies mature.

Since the results were largely influenced by the quality of the various waste streams,
it is crucial to examine the data that are utilized. The physical and chemical character-
istics of waste streams vary across time and sources, as has been acknowledged by e.g.
Strande et al. (2018) and Komakech (2014). For example, the concentration of TS in FS
could range from 12,000 to 52,500 mg/L (Strande et al., 2014), while the nutrient content
in OMSW in Kampala is reported as varying between wet and dry seasons (Komakech,
2014). This therefore demonstrates the need for detailed waste characterization as part of
the feasibility assessment process for any valorization initiative.

This study provided estimates of the potential for resource recovery from Kampala’s
organic waste streams, based on the quantity and quality of waste streams. However, since
organic waste stream generation, treatment and resource recovery can take place in a vari-
ety of contexts, many other factors (e.g. aim of recovery, technology options, logistical and
economic feasibility, local climate, etc.) can influence the resource recovery process condi-
tions and hence the quantity of valorization products obtained in full-scale implementa-
tion. The sheer multiplicity of technologies for the collection, transportation, treatment and
valorization of various waste streams implies that the outputs can vary accordingly. The
valorization efficiencies of different treatment technologies also vary and hence can influ-
ence the extent to which the CE potential is realized at full scale. While results for potential
revenues are presented in this paper, they represent a linear relationship between possible
prices for resource recovery products and the quantities of those products generated, and
they are exclusive of information about the potential costs for establishing and operating
valorization facilities. It is therefore unclear to what extent the various options in this study
can be financially viable given that prices can change and costs could surpass revenues.
Nevertheless, the potential revenues are relevant for determining the maximum costs allow-
able if a break-even point is to be reached for each respective resource recovery option
(Lalander et al., 2018). This is an area for further studies, potentially building on business
models described by Otoo and Drechsel (2018). In addition, it is important to keep in mind
that realizing the full potential for resource recovery would require measures to address
the existing social, logistical, economic, policy and governance challenges that also hinder
resource recovery (Ddiba et al., 2020).
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6 Conclusions

This study aimed at exploring the CE valorization potential of urban organic waste streams
in low- and middle-income countries, as demonstrated through the case study of Kam-
pala, Uganda. The findings indicate that even with current rates of waste collection, there
is significant potential for resource recovery from organic waste streams through products
like biogas, solid fuel, insect larvae and compost. Besides contributing to energy and food
security, these products can substitute traditional sources of energy, fertilizer and feed.
An increase in the coverage and efficiency of waste collection services could lead to even
higher valorization potential. However, potential trade-offs between resource recovery
options may imply that different waste streams are directed to different valorization alter-
natives according to pre-determined objectives.

Realizing the full CE potential from urban organic waste streams would require address-
ing social, institutional, logistical and economic factors to create a basis for implementa-
tion. Detailed data on capital and operational costs of various resource recovery options
would have to be established, environmental and social benefits, and trade-offs would have
to be assessed, e.g. via life cycle sustainability assessment and other waste streams and
valorization options which are not covered in this study could be explored. Nevertheless,
the insights in this paper about resource recovery potential at city scale provide a starting
step for planners and decision makers to pivot from waste treatment for disposal to waste
treatment for resource recovery and hence contribute towards creating more circular and
resource-efficient urban sanitation and solid waste management systems.
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